

Second Semester M.Sc. Degree Examination, July 2017 (CBCS Scheme) CHEMISTRY

C-204 : Spectroscopy - I

Time: 3 Hours Max. Marks: 70

Instruction: Answer question no. 1 and any five of the remaining.

1. Answer any ten of the following:

 $(10 \times 2 = 20)$

- a) Define the terms; axis of symmetry and centre of symmetry.
- b) Why do CO₂ and SO₂ molecules belong to different point groups?
- c) Assign the Mulliken symbols for the following irreducible representations with justification.

- d) Microwave spectra are difficult to be observed in solids and liquids. Why?
- e) Calculate the normal modes for NO₂ and N₂O. How many stretching and bending modes are present in each of these molecules?
- f) Is the electronic transitions between two π -orbitals allowed ? Justify your choice.
- g) Distinguish between harmonic and anharmonic oscillators with the help of their potential energy curves.
- h) Give the meaning of polarizability and depict the polarizability ellipsoid for CHCl₃.
- i) When a particular molecule is irradiated with Ar-laser of wavelength 514.5 nm, one of the Raman lines appears at 564.8 nm. Calculate the wave number of vibration band.
- j) How do the functions X, Y, Z transform in the point group C_{2v} ? Mention their irreducible representations.
- k) State the terms fluorescence and phosphorescence using a sketch of the energy diagram.
- I) Distinguish between overtones and combination bands.

- a) How many irreducible representations are possible for water molecule? Show that character systems for C_{2v} obey the properties of irreducible representations.
 - b) Using the following character table, find the direct products and their irreducible components for $T_1 \times T_2$, $E \times T_1$ and $E \times E$.

- 3. a) Identify the symmetry elements and operations and assign the appropriate point groups for B₂H₆, XeOF₄ and XeF₄.
 - b) Write the matrix representations of the operations of C_{2h} point group.
 - c) What is stark effect? How does it affect the $J = 1 \rightarrow J = 2$ line in the rotational spectrum of a diatomic molecule? (3+3+4=10)
- 4. a) Explain the effect of isotopic substitution on the rotation spectrum of carbon monoxide.
 - b) Write a short note on fortrat parabolae.
 - c) Explain the selection rules for symmetry and spin-forbidden transitions. (3+3+4=10)
- 5. a) How does the break down of the Born-Oppenheimer approximation affect the P and R branch lines of vibration-rotation spectrum of a diatomic molecule?
 - b) The spacing between two consecutive S-branch lines of the rotational Raman spectrum of hydrogen gas is found to be 243.2 cm⁻¹. Calculate bond length of hydrogen. (Given $h = 6.6 \times 10^{-34}$ Js, $C = 3 \times 10^8$ ms⁻¹ and mass of H-atom = 1.673×10^{-27} kg). (5+5=10)

- 6. a) Explain the differences in the intensities of the Stoke's and anti-Stoke's lines in vibrational Raman spectra.
 - b) State the Franck-Condon principle. How does it help in explaining the intensities of vibrational structures? (4+6=10)
- 7. a) The force constant of CO is 1840 Nm⁻¹. Calculate oscillation frequency and wave number in cm⁻¹.
 - b) Discuss briefly on vibration-rotation spectra of linear polyatomic molecule. (4+6=10)
- 8. a) Sketch schematically the normal modes of AB₃-planar molecule and comment on their IR and Raman activity.
 - b) Write brief notes on :Mutual exclusion principle, Fermi resonance and internal conversion. (4+6=10)

SMSCA